In this chapter we will deal with C# collections. The .NET framework provides specialized classes for data storage and retrieval. In one of the previous chapters, we have described arrays. Collections are enhancement to the arrays.
There are three distinct collection types in C#:
- standard
- generic
- concurrent
The standard collections are found under the System.Collections
. They do not store elements as specifically typed objects, but as objects of type Object
. Standard collections include ArrayList
, Hashtable
, Queue
, and Stack
.
The generic collections are found under System.Collections.Generic
. Generic collections are more flexible and are the preferred way to work with data. Generics enhance code reuse, type safety, and performance. The generic collections include Dictionary<T, T>
, List<T>
, Queue<T>
, SortedList<T>
, and Stack<T>
.
Concurrent collections include BlockingCollection<T>
, ConcurrentDictionary<T, T>
, ConcurrentQueue<T>
, and ConcurrentStack<T>
.
Generic programming is a style of computer programming in which algorithms are written in terms of to-be-specified-later types that are then instantiated when needed for specific types provided as parameters. This approach, pioneered by Ada in 1983, permits writing common functions or types that differ only in the set of types on which they operate when used, thus reducing duplication.
C# List
List
is a strongly typed list of objects that can be accessed by index. It can be found under System.Collections.Generic
namespace.
using System; using System.Collections.Generic; var langs = new List<string>(); langs.Add("Java"); langs.Add("C#"); langs.Add("C"); langs.Add("C++"); langs.Add("Ruby"); langs.Add("Javascript"); Console.WriteLine(langs.Contains("C#")); Console.WriteLine(langs[1]); Console.WriteLine(langs[2]); langs.Remove("C#"); langs.Remove("C"); Console.WriteLine(langs.Contains("C#")); langs.Insert(4, "Haskell"); langs.Sort(); foreach (string lang in langs) { Console.WriteLine(lang); }
In the preceding example, we work with the List
collection.
using System.Collections.Generic;
The List
collection is located in the System.Collections.Generic
namespace.
var langs = new List<string>();
A generic dynamic array is created. We specify that we will work with strings with the type specified inside <> characters.
langs.Add("Java"); langs.Add("C#"); langs.Add("C"); ...
We add elements to the List using the Add
method.
Console.WriteLine(langs.Contains("C#"));
We check if the List contains a specific string using the Contains
method.
Console.WriteLine(langs[1]); Console.WriteLine(langs[2]);
We access the second and the third element of the List using the index notation.
langs.Remove("C#"); langs.Remove("C");
We remove two strings from the List.
langs.Insert(4, "Haskell");
We insert a string at a specific location.
langs.Sort();
We sort the elements using the Sort
method.
$ dotnet run True C# C False C++ Haskell Java Javascript Ruby
C# ArrayList
ArrayList
is a collection from a standard System.Collections
namespace. It is a dynamic array. It provides random access to its elements. An ArrayList
automatically expands as data is added. Unlike arrays, an ArrayList
can hold data of multiple data types. Elements in the ArrayList
are accessed via an integer index. Indexes are zero based. Indexing of elements and insertion and deletion at the end of the ArrayList
takes constant time. Inserting or deleting an element in the middle of the dynamic array is more costly. It takes linear time.
using System; using System.Collections; var data = new ArrayList(); data.Add("Visual Basic"); data.Add(344); data.Add(55); data.Add(new Empty()); data.Remove(55); foreach (object el in data) { Console.WriteLine(el); } class Empty {}
In the above example, we have created an ArrayList
collection. We have added some elements to it. They are of various data type, string, int and a class object.
using System.Collections;
In order to work with ArrayList
collection, we need to use the System.Collections
namespace.
var data = new ArrayList();
An ArrayList
collection is created.
data.Add("Visual Basic"); data.Add(344); data.Add(55); data.Add(new Empty()); data.Remove(55);
We add four elements to the array with the Add
method.
data.Remove(55);
We remove one element with the Remove
method.
foreach(object el in data) { Console.WriteLine(el); }
We iterate through the array and print its elements to the console.
$ dotnet run Visual Basic 344 Empty
C# collection initializers
Collection initializers allow to specify elements to the collection during the object creation insice the {}
brackets.
using System; using System.Collections.Generic; using System.Linq; var vals = new List<int>() { 1, 2, 3, 4, 5, 6, 7 }; int sum = vals.Sum(); Console.WriteLine(sum);
The example creates a list and prints its sum. The elements of the list are specified in the collection initializer.
$ dotnet run 28
C# SortedList
SortedList<T, T>
represents a collection of key/value pairs that are sorted.
using System; using System.Collections.Generic; var sorted = new SortedList<string, int>(); sorted.Add("coins", 3); sorted.Add("books", 41); sorted.Add("spoons", 5); if (sorted.ContainsKey("books")) { Console.WriteLine("There are books in the list"); } foreach (var pair in sorted) { Console.WriteLine(pair); }
The example uses a sorted list to organize items.
var sorted = new SortedList<string, int>();
The sorted list has string keys and integer values.
if (sorted.ContainsKey("books")) { Console.WriteLine("There are books in the list"); }
With ContainsKey
we check if there are books in the collection.
foreach (var pair in sorted) { Console.WriteLine(pair); }
With foreach loop we go throug the collection and print its pairs.
$ dotnet run There are books in the list [books, 41] [coins, 3] [spoons, 5]
C# LinkedList
LinkedList
is a generic doubly linked list in C#. LinkedList only allows sequential access. LinkedList
allows for constant-time insertions or removals, but only sequential access of elements. Because linked lists need extra storage for references, they are impractical for lists of small data items such as characters.
Unlike dynamic arrays, arbitrary number of items can be added to the linked list (limited by the memory of course) without the need to realocate, which is an expensive operation.
using System; using System.Collections.Generic; var nums = new LinkedList<int>(); nums.AddLast(23); nums.AddLast(34); nums.AddLast(33); nums.AddLast(11); nums.AddLast(6); nums.AddFirst(9); nums.AddFirst(7); LinkedListNode<int> node = nums.Find(6); nums.AddBefore(node, 5); foreach (int num in nums) { Console.WriteLine(num); }
This is a LinkedList
example with some of its methods.
var nums = new LinkedList<int>();
This is an integer LinkedList
.
nums.AddLast(23); ... nums.AddFirst(7);
We populate the linked list using the AddLast
and AddFirst
methods.
LinkedListNode<int> node = nums.Find(6); nums.AddBefore(node, 5);
A LinkedList
consists of nodes. We find a specific node and add an element before it.
foreach(int num in nums) { Console.WriteLine(num); }
We are printing all elements to the console.
$ dotnet run 7 9 23 34 33 11 5 6
C# Dictionary
A dictionary
, also called an associative array, is a collection of unique keys and a collection of values, where each key is associated with one value. Retrieving and adding values is very fast. Dictionaries take more memory because for each value there is also a key.
using System; using System.Collections.Generic; var domains = new Dictionary<string, string>(); domains.Add("de", "Germany"); domains.Add("sk", "Slovakia"); domains.Add("us", "United States"); domains.Add("ru", "Russia"); domains.Add("hu", "Hungary"); domains.Add("pl", "Poland"); Console.WriteLine(domains["sk"]); Console.WriteLine(domains["de"]); Console.WriteLine("Dictionary has {0} items", domains.Count); Console.WriteLine("Keys of the dictionary:"); var keys = new List<string>(domains.Keys); foreach (string key in keys) { Console.WriteLine("{0}", key); } Console.WriteLine("Values of the dictionary:"); var vals = new List<string>(domains.Values); foreach (string val in vals) { Console.WriteLine("{0}", val); } Console.WriteLine("Keys and values of the dictionary:"); foreach (KeyValuePair<string, string> kvp in domains) { Console.WriteLine("Key = {0}, Value = {1}", kvp.Key, kvp.Value); }
We have a dictionary where we map domain names to their country names.
var domains = new Dictionary<string, string>();
We create a dictionary with string keys and values.
domains.Add("de", "Germany"); domains.Add("sk", "Slovakia"); domains.Add("us", "United States"); ...
We add some data to the dictionary. The first string is the key. The second is the value.
Console.WriteLine(domains["sk"]); Console.WriteLine(domains["de"]);
Here we retrieve two values by their keys.
Console.WriteLine("Dictionary has {0} items", domains.Count);
We print the number of items by referring to the Count
property.
var keys = new List<string>(domains.Keys); foreach(string key in keys) { Console.WriteLine("{0}", key); }
These lines retrieve all keys from the dictionary.
var vals = new List<string>(domains.Values); foreach(string val in vals) { Console.WriteLine("{0}", val); }
These lines retrieve all values from the dictionary.
foreach(KeyValuePair<string, string> kvp in domains) { Console.WriteLine("Key = {0}, Value = {1}", kvp.Key, kvp.Value); }
Finally, we print both keys and values of the dictionary.
$ dotnet run Slovakia Germany Dictionary has 6 items Keys of the dictionary: de sk us ru hu pl Values of the dictionary: Germany Slovakia United States Russia Hungary Poland Keys and values of the dictionary: Key = de, Value = Germany Key = sk, Value = Slovakia Key = us, Value = United States Key = ru, Value = Russia Key = hu, Value = Hungary Key = pl, Value = Poland
C# Queues
A queue
is a First-In-First-Out (FIFO) data structure. The first element added to the queue will be the first one to be removed. Queues may be used to process messages as they appear or serve customers as they come. The first customer which comes should be served first.
using System; using System.Collections.Generic; var msgs = new Queue<string>(); msgs.Enqueue("Message 1"); msgs.Enqueue("Message 2"); msgs.Enqueue("Message 3"); msgs.Enqueue("Message 4"); msgs.Enqueue("Message 5"); Console.WriteLine(msgs.Dequeue()); Console.WriteLine(msgs.Peek()); Console.WriteLine(msgs.Peek()); Console.WriteLine(); foreach (string msg in msgs) { Console.WriteLine(msg); }
In our example, we have a queue with messages.
var msgs = new Queue<string>();
A queue of strings is created.
msgs.Enqueue("Message 1"); msgs.Enqueue("Message 2"); ...
The Enqueue
adds a message to the end of the queue.
Console.WriteLine(msgs.Dequeue());
The Dequeue
method removes and returns the item at the beginning of the queue.
Console.WriteLine(msgs.Peek());
The Peek
method returns the next item from the queue, but does not remove it from the collection.
$ dotnet run Message 1 Message 2 Message 2 Message 2 Message 3 Message 4 Message 5
The Dequeue
method removes the "Message 1" from the collection. The Peek
method does not. The "Message 2" remains in the collection.
C# Stacks
A stack is a Last-In-First-Out (LIFO) data structure. The last element added to the queue will be the first one to be removed. The C language uses a stack to store local data in a function. The stack is also used when implementing calculators.
using System; using System.Collections.Generic; var myStack = new Stack<int>(); myStack.Push(1); myStack.Push(4); myStack.Push(3); myStack.Push(6); myStack.Push(4); Console.WriteLine(myStack.Pop()); Console.WriteLine(myStack.Peek()); Console.WriteLine(myStack.Peek()); Console.WriteLine(); foreach (int item in myStack) { Console.WriteLine(item); }
We have a simple stack example above.
var myStack = new Stack<int>();
A Stack
data structure is created.
myStack.Push(1); myStack.Push(4); ...
The Push
method adds an item at the top of the stack.
Console.WriteLine(stc.Pop());
The Pop
method removes and returns the item from the top of the stack.
Console.WriteLine(myStack.Peek());
The Peek
method returns the item from the top of the stack. It does not remove it.
$ dotnet run 4 6 6 6 3 4 1
This part of the C# tutorial was dedicated to Collections in C#.