C# data types

xingyun86 2021-5-30 832

In this part of the C# tutorial, we talk about data types.

Computer programs, including spreadsheets, text editors, calculators, or chat clients, work with data. Tools to work with various data types are essential part of a modern computer language. A data type is a set of values and the allowable operations on those values.

C# data type

A  is a set of values, and the allowable operations on those values.

The two fundamental data types in C# are value types and reference types. Primitive types (except strings), enumerations, tuples, and structures are value types. Classes, records, strings, interfaces, arrays, and delegates are reference types. Every type has a default value.

Reference types are created on the Heap. The lifetime of the reference type is managed by the .NET framework. The default value for reference types is null reference. Assignment to a variable of a reference type creates a copy of the reference rather than a copy of the referenced value.

Value types are created on the stack. The lifetime is determined by the lifetime of the variable. Assignment to a variable of a value type creates a copy of the value being assigned. Value types have different default values. For example, boolean default value is false, decimal 0, string an empty string "".

C# Boolean values

There is a duality built in our world. There is a Heaven and Earth, water and fire, Yin and Yang, man and woman, love and hatred. In C# the bool data type is a primitive data type having one of two values: true or false. This is a fundamental data type that is very common in computer programs.

Happy parents are waiting a child to be born. They have chosen a name for both possibilities. If it is going to be a boy, they have chosen John. If it is going to be a girl, they have chosen Victoria.

Program.cs
using System;

var random = new Random();

bool male = Convert.ToBoolean(random.Next(0, 2));

if (male)
{
    Console.WriteLine("We will use name John");
}
else
{
    Console.WriteLine("We will use name Victoria");
}

The program uses a random number generator to simulate our case.

var random = new Random();

We create a Random object which is used to compute random numbers. It is part of the System namespace.

bool male = Convert.ToBoolean(random.Next(0, 2));

The Next method returns a random number within a specified range. The lower bound is included, the upper bound is not. In other words, we receive either 0 or 1. Later the Convert method converts these values to boolean ones, 0 to false and 1 to true.

if (male)
{
    Console.WriteLine("We will use name John");
} else
{
    Console.WriteLine("We will use name Victoria");
}

If the male variable is set to true, we choose the name John. Otherwise, we choose the name Victoria. Control structures like if/else statements work with boolean values.

$ dotnet run
We will use name John
$ dotnet run
We will use name John
$ dotnet run
We will use name Victoria

C# integers

Integers are a subset of the real numbers. They are written without a fraction or a decimal component. Integers fall within a set Z = {..., -2, -1, 0, 1, 2, ...}. Integers are infinite.

In computer languages, integers are primitive data types. Computers can practically work only with a subset of integer values, because computers have finite capacity. Integers are used to count discrete entities. We can have 3, 4, 6 humans, but we cannot have 3.33 humans. We can have 3.33 kilograms.

VB Alias.NET TypeSizeRange
sbyteSystem.SByte1 byte-128 to 127
byteSystem.Byte1 byte0 to 255
shortSystem.Int162 bytes-32,768 to 32,767
ushortSystem.UInt162 bytes0 to 65,535
intSystem.Int324 bytes-2,147,483,648 to 2,147,483,647
uintSystem.UInt324 bytes0 to 4,294,967,295
longSystem.Int648 bytes-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
ulongSystem.UInt648 bytes0 to 18,446,744,073,709,551,615

These integer types may be used according to our needs. No one, (except perhaps for some biblical people), can be older than 120, 130 years. We can then use the byte type for age variable in a program. This will save some memory.

Discrete entities

If we work with integers, we deal with discrete entities. We would use integers to count apples.

Program.cs
using System;

int baskets = 16;
int applesInBasket = 24;

int total = baskets * applesInBasket;

Console.WriteLine($"There are total of {total} apples");

In our program, we count the total amount of apples. We use the multiplication operation.

int baskets = 16;
int applesInBasket = 24;

The number of baskets and the number of apples in each basket are integer values.

int total = baskets * applesInBasket;

Multiplying those values we get an integer too.

$ dotnet run
There are total of 384 apples

C# integer notations

Integers can be specified in three different notations in C#: decimal, hexadecimal, and binary. There are no notations for octal values. Decimal numbers are used normally as we know them. Hexadecimal numbers are preceded with 0x characters, binary with 0b.

Program.cs
using System;

int num1 = 31;
int num2 = 0x31;
int num3 = 0b1101;

Console.WriteLine(num1);
Console.WriteLine(num2);
Console.WriteLine(num3);

In the program, we have three integers expressed in three different notations.

$ dotnet run
31
49
13

The default notation is the decimal. The program shows these two numbers in decimal. In other words, hexadecimal 0x31 is 49 decimal.

Using underscores

C# allows to use underscore characters for numeric literals to increase readability of the values.

Program.cs
using System;

var num1 = 234_321_000;
Console.WriteLine(num1);

var num2 = 0b_0110_000_100;
Console.WriteLine(num2);

The program uses an integer literals with underscore character to improve the readability of the values.

Arithmetic overflow

An arithmetic overflow is a condition that occurs when a calculation produces a result that is greater in magnitude than that which a given register or storage location can store or represent.

Program.cs
using System;

byte a = 254;

Console.WriteLine(a);
a++;

Console.WriteLine(a);
a++;

Console.WriteLine(a);
a++;

Console.WriteLine(a);

In this example, we try to assign a value beyond the range of a data type. This leads to an arithmetic overflow.

$ dotnet run
254
255
0
1

When an overflow occurs, the variable is reset to the lower bound of the data type. (In case of a byte type it is zero.)

With the checked keyword, we can enforce an exception when the overflow occurs.

Program.cs
using System;

checked
{
    byte a = 254;

    Console.WriteLine(a);
    a++;

    Console.WriteLine(a);
    a++;

    Console.WriteLine(a);
    a++;

    Console.WriteLine(a);
}

In the example, the statements are placed in the body of the checked block.

$ dotnet run
254
255
Unhandled Exception: System.OverflowException: Arithmetic operation resulted in an overflow.
    ...

This time a System.OverflowException is thrown.

C# floating point numbers

Floating point numbers represent real numbers in computing. Real numbers measure continuous quantities, like weight, height, or speed. In C# we have three floating point types: floatdouble, and decimal.

C# Alias.NET TypeSizePrecisionRange
floatSystem.Single4 bytes7 digits+-1.5 x 10 to +-3.4 x 10
doubleSystem.Double8 bytes15-16 digits+-5.0 x 10 to +-1.7 x 10
decimalSystem.Decimal16 bytes28-29 decimal places+-1.0 x 10to +-7.9 x 10

The above table gives the characteristics of the floating point types.

By default, real numbers are double in C# programs. To use a different type, we must use a suffix. The F/f for float numbers and M/m for decimal numbers.

Program.cs
using System;

float n1 = 1.234f;
double n2 = 1.234;
decimal n3 = 1.234m;

Console.WriteLine(n1);
Console.WriteLine(n2);
Console.WriteLine(n3);

Console.WriteLine(n1.GetType());
Console.WriteLine(n2.GetType());
Console.WriteLine(n3.GetType());

In the above program, we use three different literal notations for floating point numbers.

float n1 = 1.234f;

The f suffix is used for a float number.

double n2 = 1.234;

If we do not use a suffix, then it is a double number. We can optionally use the d suffix.

Console.WriteLine(n1.GetType());

The GetType method returns the type of the number.

$ dotnet run
1.234
1.234
1.234
System.Single
System.Double
System.Decimal

We can use various syntax to create floating point values.

Program.cs
using System;

float n1 = 1.234f;
float n2 = 1.2e-3f;
float n3 = (float)1 / 3;

Console.WriteLine(n1);
Console.WriteLine(n2);
Console.WriteLine(n3);

We have three ways to create floating point values. The first is the 'normal' way using a decimal point. The second uses a scientific notation. And the last one as a result of a numerical operation.

float n2 = 1.2e-3f;

This is the scientific notation for floating point numbers. Also known as exponential notation, it is a way of writing numbers too large or small to be conveniently written in standard decimal notation.

float n3 = (float) 1 / 3;

The (float) construct is called casting. The division operation returns integer numbers by default. By casting we get a float number.

$ dotnet run
1.234
0.0012
0.3333333

The float and double types are inexact.

Program.cs
using System;

double n1 = 0.1 + 0.1 + 0.1;
double n2 = 1 / 3.0;

if (n1 == n2)
{
    Console.WriteLine("Numbers are equal");
}
else
{
    Console.WriteLine("Numbers are not equal");
}

Caution should be exercised when comparing floating point values.

$ dotnet run
Numbers are not equal

And the numbers are not equal.

A sprinter for 100m ran 9.87s. What is his speed in km/h?

Program.cs
using System;

float distance = 0.1f;

float time = 9.87f / 3600;

float speed = distance / time;

Console.WriteLine($"The average speed of a sprinter is {speed} km/h");

In this example, it is necessary to use floating point values.

float distance = 0.1f;

100 m is 0.1 km.

float time = 9.87f / 3600;

9.87 s is 9.87/(60*60) h.

float speed = distance / time;

To get the speed, we divide the distance by the time.

$ dotnet run
The average speed of a sprinter is 36.47416 km/h

C# enumerations

Enumerated type (also called enumeration or enum) is a data type consisting of a set of named values. A variable that has been declared as having an enumerated type can be assigned any of the enumerators as a value. Enumerations make the code more readable.

Program.cs
using System;

Days day = Days.Monday;

if (day == Days.Monday)
{
    Console.WriteLine("It is Monday");
}

Console.WriteLine(day);

foreach (int i in Enum.GetValues(typeof(Days)))
{
    Console.WriteLine(i);
}

enum Days
{
    Monday,
    Tuesday,
    Wednesday,
    Thursday,
    Friday,
    Saturday,
    Sunday
}

In our code example, we create an enumeration for week days.

enum Days
{
    Monday,
    Tuesday,
    Wednesday,
    Thursday,
    Friday,
    Saturday,
    Sunday
}

The enumeration is created with a enum keyword. The Monday, Tuesday, ... barewords store in fact numbers 0..6.

Days day = Days.Monday;

We have a variable called day which is of the enumerated type Days. It is initialized to Monday.

if (day == Days.Monday)
{
    Console.WriteLine("It is Monday");
}

This code is more readable than comparing a day variable to some number.

Console.WriteLine(day);

This line prints Monday to the console.

foreach (int i in Enum.GetValues(typeof(Days)))
{
    Console.WriteLine(i);
}

This loop prints 0..6 to the console. We get underlying types of the enum values. For a computer, an enum is just a number. The typeof is an operator used to obtain the System.Type object for a type. It is needed by the GetValues method. This method returns an array of the values of a specified enumeration. And the foreach keyword goes through the array, element by element and prints them to the terminal.

We further work with enumerations.

Program.cs
using System;

Seasons s1 = Seasons.Spring;
Seasons s2 = Seasons.Autumn;

Console.WriteLine(s1);
Console.WriteLine(s2);

public enum Seasons : byte
{
    Spring = 1,
    Summer = 2,
    Autumn = 3,
    Winter = 4
}

Seasons can be easily used as enums. We can specify the underlying type for the enum and we can give exact values for them.

public enum Seasons : byte
{
    Spring = 1,
    Summer = 2,
    Autumn = 3,
    Winter = 4
}

With a colon and a data type we specify the underlying type for the enum. We also give each member a specific number.

Console.WriteLine(s1);
Console.WriteLine(s2);

These two lines print the enum values to the console.

$ dotnet run
Spring
Autumn

C# tuples

A tuple is an ordered, immutable list of heterogeneous data values. Tuples are value types. Tuples must contain at least two elements. Tuples are defined with round brackets ().

Program.cs
using System;

var words = ("sky", "blue", "rock", "fountain");

Console.WriteLine(words);

Console.WriteLine(words.Item1);
Console.WriteLine(words.Item2);

var words2 = (w1: "forest", w2: "deep", w3: "sea");

Console.WriteLine(words2.w1);
Console.WriteLine(words2.w2);
Console.WriteLine(words2.w3);

In the example we define two tuples.

var words = ("sky", "blue", "rock", "fountain");

This is an unnamed tuple definition.

Console.WriteLine(words);

We print all elements of the tuple to the console.

Console.WriteLine(words.Item1);
Console.WriteLine(words.Item2);

We print the first two elements. We access elements of an unnamed tuple with special Item1Item2, ... properties.

var words2 = (w1: "forest", w2: "deep", w3: "sea");

This is a definition of a named tuple.

Console.WriteLine(words2.w1);
Console.WriteLine(words2.w2);
Console.WriteLine(words2.w3);

We access the elements by their names.

$ dotnet run
(sky, blue, rock, fountain)
sky
blue
forest
deep
sea

C# records

C# 9 introduced records. Records are immutable reference types. Record types use value-based equality. A record is created with the record keyword.

The compiler automatically generates several methods for a record type:

  • an override of Object.Equals(Object)
  • record types implement System.IEquatable<T>.
  • a virtual Eqauls method whose parameter is the record type
  • an override of Object.GetHashCode
  • methods for operator == and operator !=
Program.cs
using System;
using System.Collections.Generic;
using System.Linq;

var cars = new List<Car>
{
    new Car("Audi", 52642),
    new Car("Mercedes", 57127),
    new Car("Skoda", 9000),
    new Car("Volvo", 29000),
    new Car("Bentley", 350000),
    new Car("Citroen", 21000),
    new Car("Hummer", 41400),
    new Car("Volkswagen", 21600)
};

var res = from car in cars
          where car.Price > 30000 && car.Price < 100000
          select new { car.Name, car.Price };

foreach (var car in res)
{
    Console.WriteLine($"{car.Name} {car.Price}");
}

record Car(string Name, int Price);

In the example, we use LINQ to filter the list of car objects. We include all cars whose price is between 30000 and 100000.

record Car(string Name, int Price);

A car is a record type.

$ dotnet run
Audi 52642
Mercedes 57127
Hummer 41400

C# strings and chars

The string is a data type representing textual data in computer programs. A string in C# is a sequence of Unicode characters. A char is a single Unicode character. Strings are enclosed by double quotes.

Program.cs
using System;

string word = "ZetCode";

char c = word[0];

Console.WriteLine(c);

The program prints 'Z' character to the terminal.

string word = "ZetCode";

Here we create a string variable and assign it the "ZetCode" value.

char c = word[0];

string is an array of Unicode characters. We can use the array access notation to get a specific character from the string. The number inside the square brackets is the index into the array of characters. The index is counted from zero. It means that the first character has index 0.

$ dotnet run
Z

The program prints the first character of the "ZetCode" string to the console.

C# arrays

The array is a complex data type which handles a collection of elements. Each of the elements can be accessed by an index. All the elements of an array must be of the same data type.

Program.cs
using System;

int[] numbers = new int[5];

numbers[0] = 3;
numbers[1] = 2;
numbers[2] = 1;
numbers[3] = 5;
numbers[4] = 6;

int len = numbers.Length;

for (int i = 0; i < len; i++)
{
    Console.WriteLine(numbers[i]);
}

In this example, we declare an array, fill it with data and then print the contents of the array to the console.

int[] numbers = new int[5];

We declare an integer array which can store up to five integers. So we have an array of five elements, with indexes 0..4.

numbers[0] = 3;
numbers[1] = 2;
numbers[2] = 1;
numbers[3] = 5;
numbers[4] = 6;

Here we assign values to the created array. We can access the elements of an array by the array access notation. It consists of the array name followed by square brackets. Inside the brackets we specify the index to the element that we want.

int len = numbers.Length;

Each array has a Length property which returns the number of elements in the array.

for (int i=0; i<len; i++)
{
    Console.WriteLine(numbers[i]);
}

We traverse the array and print the data to the console.

C# DateTime

The DateTime is a value type. It represents an instant in time, typically expressed as a date and time of day.

Program.cs
using System;

DateTime now = DateTime.Now;

System.Console.WriteLine(now);
System.Console.WriteLine(now.ToShortDateString());
System.Console.WriteLine(now.ToShortTimeString());

We show today's date in three different formats: date & time, date, and time.

DateTime now = DateTime.Now;

Gets a DateTime object that is set to the current date and time on this computer, expressed as the local time.

System.Console.WriteLine(now);

This line prints the date in full format.

System.Console.WriteLine(now.ToShortDateString());
System.Console.WriteLine(now.ToShortTimeString());

The ToShortDateString returns a short date string format, the ToShortTimeString returns a short time string format.

$ dotnet run
1/7/2021 6:01:46 AM
1/7/2021
6:01 AM

C# type casting

We often work with multiple data types at once. Converting one data type to another one is a common job in programming. Type conversion or typecasting refers to changing an entity of one data type into another. There are two types of conversion: implicit and explicit. Implicit type conversion, also known as coercion, is an automatic type conversion by the compiler.

Program.cs
using System;

int val1 = 0;
byte val2 = 15;

val1 = val2;

Console.WriteLine(val1.GetType());
Console.WriteLine(val2.GetType());

Console.WriteLine(12 + 12.5);
Console.WriteLine("12" + 12);

In this example, we have several implicit conversions.

val1 = val2;

Here we work with two different types: int and byte. We assign a byte value to an int value. It is a widening operation. The int values have four bytes; byte values have only one byte. Widening conversions are allowed. If we wanted to assign a int to a byte, this would be a shortening conversion.

Implicit shortening conversions are not allowed by C# compiler. This is because in implicit shortening conversion we could unintentionally loose precision. We can do shortening conversions, but we must inform the compiler about it. That we know what we are doing. It can be done with explicit conversion.

Console.WriteLine(12 + 12.5);

We add two values: one integer and one floating point value. The result is a floating point value. It is a widening implicit conversion.

Console.WriteLine("12" + 12);

The result is 1212. An integer is converted to a string and the two strings are concatenated.

Next we show some explicit conversions in C#.

Program.cs
using System;

double b = 13.5;

float a = (float) b;
float c = (int) a;

Console.WriteLine(a);
Console.WriteLine(b);
Console.WriteLine(c);

We have three values. We do some explicit conversions with these values.

float a = (float) b;

We convert a double value to a float value. Explicit conversion is done by specifying the intended type between two round brackets. In this case, no precision is lost. Number 13.5 can be safely assigned to both types.

float c = (int) a;

We convert a float value to int value. In this statement, we loose some precision: 13.5 becomes 13.

$ dotnet run
13.5
13.5
13

C# Nullable types

Value types cannot be assigned a null literal, reference types can. Applications that work with databases deal with the null value. Because of this, special nullable types were introduced into the C# language. Nullable types are instances of the System.Nullable<T> struct.

Program.cs
using System;

Nullable<bool> male = null;
int? age = null;

Console.WriteLine(male.HasValue);
Console.WriteLine(age.HasValue);

A simple example demonstrating nullable types.

Nullable<bool> male = null;
int? age = null;

There are two ways how to declare a nullable type. Either with the Nullable<T> generic structure in which the type is specified between the angle brackets, or we can use a question mark after the type. The latter is in fact a shorthand for the first notation.

$ dotnet run
False
False

C# Convert & Parse methods

There are two groups of methods which are used to convert values.

Program.cs
using System;

Console.WriteLine(Convert.ToBoolean(0.3));
Console.WriteLine(Convert.ToBoolean(3));
Console.WriteLine(Convert.ToBoolean(0));
Console.WriteLine(Convert.ToBoolean(-1));

Console.WriteLine(Convert.ToInt32("452"));
Console.WriteLine(Convert.ToInt32(34.5));

The Convert class has many methods for converting values. We use two of them.

Console.WriteLine(Convert.ToBoolean(0.3));

We convert a double value to a bool value.

Console.WriteLine(Convert.ToInt32("452"));

And here we convert a string to an int.

$ dotnet run
True
True
False
True
452
34
Program.cs
using System;

Console.WriteLine(Int32.Parse("34"));
Console.WriteLine(Int32.Parse("-34"));
Console.WriteLine(Int32.Parse("+34"));

Converting strings to integers is a very common task. We often do such conversions when we fetch values from databases or GUI components.

Console.WriteLine(Int32.Parse("34"));

We use the Parse method of the Int32 class to convert a string to int value.

$ dotnet run
34
-34
34

In this part of the C# tutorial we covered data types and their conversions.


×
打赏作者
最新回复 (0)
只看楼主
全部楼主
返回